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Recent progress in the microscopic description of the liquid-solid coexistence is 
examined critically and put into historical perspective. The emphasis is on the 
density functional theories, including some of their more controversial aspects. 
The underlying physical freezing mechanism is discussed in detail. 
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1. I N T R O D U C T I O N  

Prof. I. Prigogine, to whom this article is dedicated on the occasion of this 
70th birthday, may be pleased to hear that in the recent density functional 
theories the freezing of hard spheres can be described as a competition 
between two forms of entropy: a loss in configurational entropy when the 
particles go into the ordered state, and a gain in correlational entropy 
resulting from the particle localization. Before considering this in te r -  
pretation in more detail, it may be useful to recall briefly some of the main 
attempts toward a theoretical study of freezing. 

In the early days the liquid-solid transition was usually identified with 
a mechanical instability occurring in one of the coexisting phases. The solid 
was thought to melt when its shear rigidity vanishes (1) or the fluid was con- 
sidered to freeze when its static structure factor diverges (2'3) for a particular 
lattice periodic density fluctuation. Today it is clear that such one-phase 
approaches cannot locate the two-phase coexistence accurately, since in a 
first-order transition, such as freezing, each phase can exist as a thermo- 
dynamically metastable but mechanically stable state in a finite region 
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around the true coexistence point. The phase transition itself can be located 
unambiguously only by the thermodynamic conditions of equality of the 
pressure, the temperature, and the chemical potential of the coexisting 
phases. 

This does not imply, however, that a one-phase approach cannot be 
used as a means to locate approximately the phase transition. This is, e.g., 
the case for the empirical Lindemann melting rule, (4) stating that the solid 
melts when the rms deviation of the atomic positions from their average 
value exceeds 15% of the nearest neighbor distance. Similarly, the 
empirical Hansen-Verlet freezing rule (51 states that a monoatomic simple 
liquid will freeze when the maximum of its static structure factor reaches a 
value of 2.85. These rules, besides being empirical, are only approximate 
and cannot be used to locate the true thermodynamic coexistence between 
a liquid and a solid; as already stated, such a study does require the 
simultaneous consideration of both the liquid and the solid. In principle, 
one could nevertheless still use different theories to describe the different 
coexisting phases, but, in practice, this usually leads to uncertainties, e.g., 
on the location of the melting line] 6~ almost as large as those of the one- 
phase theories. A unified description of both phases, based on the integral 
equations of equilibrium statistical mechanics, was first advocated by 
Kirkwood and Monroe. 17~ Unfortunately, at the time of their writing, 
liquid state theory, and in particular the integral equations, was a recent, 
almost undeveloped topic. Consequently, these authors bypassed the 
difficult problem of solving the integral equation for the solid by an undue 
expansion (8t of the solid around the coexisting liquid. 

This line of research was then further developed ~ in parallel with 
liquid state theory, but without much success, (1~ although some more 
recent attempts should be cited here. (11) The final step leading to the 
modern theory of freezing was taken by Ramakrishnan and Yussouff, t12t 
who, taking advantage of the developments of the theory of liquids during 
the past decade, reformulated the Kirkwood and Monroe theory into the 
more flexible language of the direct correlation function. These authors did 
not solve the problem completely, but showed that one could obtain good 
freezing data as output by taking experimental liquid state data as input 
together with some simple approximations of the theoretical expressions. 

This agreement between theory and experiment, the first within a 
statistical theory of freezing, was the basis for a whole series of 
investigations(13 35~ aiming mainly at a better understanding of the 
underlying theory. The common language for all these investigations is the 
density functional theory of nonuniform systems. The basic feature of the 
latter theory is that the thermodynamic potentials are viewed as functionals 
of the local density. Such functionals are not new and have been used for 
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some time in statistical mechanics, t36-4~) The density functional language is, 
however, particularly well suited to the modern freezing theories, since the 
latter view the solid as a strongly nonuniform liquid, a somewhat 
antihistorical viewpoint. These theories are hence also strongly liquid-based 
and therefore usually termed "freezing" theories. Notice that in principle 
one could take the symmetric viewpoint by considering the liquid as a 
strongly disordered solid and construct a solid-phase-based theory of 
melting. The theory of liquids is, however, in a much more advanced stage 
than the theory of disordered solids and all theories proposed to date are 
therefore liquid-based freezing theories. 

In the next section the main points of the density functional theory of 
freezing will be presented in a general setup. Details and explicit results can 
be found in the exhaustive list of original investigations given in the 
references. 11: 35~ Details about the density functional method itself, whose 
scope largely exceeds the theory of freezing and has revealed itself recently 
as a very efficient approach to nonuniform systems in general, can be found 
in the investigations listed in Ref. 36-41. My main goal here will hence be 
restricted to a unified presentation of the many differences between the 
different freezing theories available in the literature together with a number 
of criticisms and open questions that sooner or later will have to be 
considered explicitly in order to assess the quality of the results obtained 
hitherto. 

In Section 3 I continue with a detailed explanation of the physical 
freezing mechanism, already alluded to in the heading, as viewed from the 
density functional theories, since this topic has not yet been considered in 
the literature. Section 4 contains a few closing remarks. 

2. THE DENSITY FUNCTIONAL THEORY OF FREEZING 

The original work of Kirkwood and Monroe/71 was formulated in the 
traditional language of the pair correlation function. This leads to dif- 
ficulties and poor approximations, as already discussed elsewhere./8,42~ The 
seminal work of Ramakrishnan and Yussouff (12~ instead was formulated in 
the modern language of the direct correlation function, and its relation to 
the density functional theory (391 was clarified by Haymet and Oxtoby. (15~ 
The density functional theory under consideration here is the finite- 
temperature, classical analog of the zero-temperature, quantal version well 
known from solid state physics. 143~ 

2.1. GenerM Scheme 

Although not always clearly stated, the theoretical basis of the density 
functional theory is a theorem established by Mermin (37/ and stating that 

822/48/5-6-12 
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there is a one-to-one correspondence between the local density p(r) and the 
external potential ~(r), which uniquely locates the physical system in space 
(e.g., by fixing the boundaries of the fluid, fixing the crystal axes of the 
solid, etc.). The thermodynamic potential of a given system (say, the 
Helmholtz free energy F, the Gibbs free energy G, or the grand potential 
s besides being a function of the appropriate thermodynamic variables, is 
also a functional of ~b(r), since the external potential defines uniquely which 
system is being considered. In what follows I will indicate-this functional 
dependence by square brackets as F =  Fish], and leave the dependence on 
the remaining thermodynamic variables (such as temperature T and 
volume V) implicit. 

In view of the subsequent variational properties of the thermodynamic 
potentials, the use of the external potential (as a variational variable) is 
rather inconvenient and therefore, using Mermin's theorem, we change 
variable from ~b(r) to p(r) and consider instead F (or any other 
thermodynamic potential) as a functional of the local density, F =  F[p]. 
Henceforth, I consider the Helmholtz free energy F as the basic thermo- 
dynamic potential and p(r) as the basic variational variable. The grand 
potential ~ = s  is then obtained from F[p] by a Legendre transfor- 
mation, 

f2[p] = F[p] - ~ dr p(r) (SF[p___~] (2.1) 
J v c~p(r) 

and using the relation between the potentials f2 = F -  G, we can also obtain 
the Gibbs free energy G = G[p]: 

(~F[p ] ( ,  

G[p] = J |v dr p(r) (2.2) 6p(r) 

from F[p]. It is also convenient to introduce the intensive quantities 

F[p] O[p]  G[p] 
- f [ p ] ,  = -p[p],  - -  = p/~[p] (2.3) 

V V V 

corresponding to the (Helmholtz) free energy per unit volume f=-f[p] ,  
the pressure p = pip], and the chemical potential # = #[p] ,  where O is the 
average density: 

p = l f v d r  p(r) (2.4) 

i.e., the spatial average over the volume V of the local density p(r). The 
true equilibrium state, say po(r), and the equilibrium value of the poten- 
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tials, say F o = F[po], can then be obtained from the stationarity properties 
of the potentials. For instance, at constant average density p the Helmholtz 
free energy F has to remain constant, ~Flp = 0 (it is understood that all 
remaining implicit arguments are kept constant). The corresponding Euler- 
Lagrange equation can be written 

~FEp] 
6p(r) p =/~ (2.5) 

and ensures that indeed 

6F,~=f d r ~ @ ( r ) = 0  (2.6) 

provided the chemical potential # is (a space-independent) constant. 
Having located the equilibrium density with the aid of (2.5), we 
can find the equilibrium thermodynamics from (2.3). The crucial point 
consists hence in finding the expression of F=F[p].  To this end, write 
[ A = h/(2~mk B T) 1/2 ] 

T f dr p(r){ln[A3p(r)] - 1 } F[p] kB 
V 

§ fv  dr p(r) ~b(r) § Fex[P ] (2.7) 

where we have separated the purely configurational ideal gas term and the 
contribution of the external potential from the remaining excess term, 
Fex =Fex[p]. The latter can be related to the direct correlation function 
c(r, r'; [p])  through 

62F~x[p] 
fl 6p(r') 6p(r) = c(r, r'; [p])  (2.8) 

with/~ = 1/kB T. Equation (2.8) can be integrated twice between a reference 
state of density pR(r), and the actual state of density p(r), yielding the 
following basic expression for the excess free energy: 

F~x[P]=F~• fvdr  6~R(r) /Jptr) 

fvdrf - k n T  dr' d 2 ( 1 - 2 )  c(r,r'; [pR+2Ap])Ap(r ' )Ap(r)  
v 

(2.9) 
where Ap(r)=p(r)--pR(r).  Knowing the rhs of (2.9), i.e., knowing the 
integration constants Fr 6Fe~[pR]/[)pR(r), and the direct correlation 
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function c(r, r'; [p])  as a functional of the local density, one can in prin- 
ciple reconstruct, the complete free energy functional F[p] from (2.7). This, 
however, is usually not the case, and, in practice, it is at this stage that 
rather drastic approximations [to the rhs of (2.9)] have to be introduced. 

2.2. Open Questions 

To find the local density p(r) of a system of two coexisting (liquid and 
solid) phases is a largely unsolved problem. This difficulty is bypassed in all 
the existing freezing theories by approximating the true two-phase 
coexistence problem by one of bulk-phase coexistence (between a uniform 
bulk liquid and a periodic bulk solid), neglecting the presence of the 
difficult interfacial region. The above density functional, say F[p],  is then 
worked out separately for the liquid and for the solid and the coexistence is 
found only a posteriori by comparing the thermodynamic potentials of the 
two bulk phases. This procedure has the advantage that each bulk phase 
can now be formally considered as of infinite extent and in the thermo- 
dynamic limit the contribution of the external potential to the thermo- 
dynamics can be neglected. The uniform liquid phase is then easily treated 
according to the above scheme [e.g., taking p( r )=pL and pR ( r ) -0  in 
Eq. (2.9), in which case the integration constants vanish] and the real 
problem amounts to describing the bulk solid [e.g., taking p( r )=ps(r  ) 
lattice periodic and pR(r) = PR uniform, so that the integration constants of 
(2.9) can be borrowed from liquid state theory]. Once this is achieved, the 
solid of lowest free energy (fcc, bcc,...) is compared to the liquid and the 
liquid-solid coexistence is determined by finding a liquid and a solid that, 
at constant temperature, have the same pressure and the same chemical 
potential. 

Although physically quite straightforward, the above procedure raises 
a number of basic questions to which there are as yet no answers. It is, 
indeed, clear that treating the thermodynamically metastable and stable 
phases on the same footing requires a fair amount of analyticity of the 
basic free energy density functional. Similarly, the formal permutation of 
the thermodynamic limit with the limit of vanishing (symmetry-breaking) 
external potential can certainly not be taken for granted. It is, however, my 
impression that these questions will remain open for some time and that, in 
view of the almost infinite complexity of a full-scale attack on the phase 
transition problem, the above procedure represents a quite reasonable 
starting point. Even so, many controversies have arisen with respect to how 
the above procedure has to be worked out and each series of authors (x: 351 
has used different (but closely related) approximation schemes. The by far 
most drastic approximation concerns Eq. (2.9). All authors agree in taking 
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a uniform reference state, pR(r )=pR,  in (2.9), but differ in their 
approximation of the dcf (direct correlation function) of the solid. 

2.3. The  Sol id As a Per tu rba t ion  of  the  Liquid 

In the original work of Ramakrishnan and Yussouff (12) the dcf of the 
solid, c(r, r'; [ p R + 2  zip]), appearing in Eq. (2.9) was expanded around 
2 = 0 and only the first term was retained: 

rod2(1 2) r ' ; [ p R + 2 A p ] )  c ( r ,  

= d;~.(1-2){c(r,r'; [pR]) + O(2)} 
"~0 

l 
=~c( r ,  r'; [ P R ] ) +  "" (2.10) 

and since the reference state PR is taken to be the uniform liquid, the rhs of 
(2.10) [and hence of (2.9)] can be computed from liquid state theory; here 
c(r, r'; [ p R ] ) - c ( f r -  r']; pR) is the dcf of the liquid at the reference density. 
This approximation of the dcf of the solid by the dcf of the liquid is a 
rephrasing of the original Kirkwood-Monroe  idea ~7,s) (of approximating 
the pair correlations of the solid by those of the liquid) and has been taken 
over by many authors. In the general sense this idea merely expresses our 
ignorance of the dcf of the solid and it is difficult to see how this 
approximation could be bypassed. Physically it is clear that the angle- 
averaged dcf of the solid should be qualitatively similar to the dcf of the 
liquid, since the angle average will destroy the long-range order and one is 
then left with very similar short-range orders. Although Eq. (2.9) is not an 
angle average but a spatial average [weighted by Ap(r)], one can still 
argue in favor of this general idea. It is, however, less easy to argue that it 
will be sufficient to do that only for the first term of the ,Lexpansion in 
(2.10). This is nevertheless the way this idea has been implemented in most 
of the literatureJ '2 1.4,22.30,32,34) Haymet(17) has proposed to include also the 
next term in the series of (2.10): 

fld), (1 - 2 )  c(r, r'; [pR+2Ap]) 

= d2 (1 -)o)  c(r, r ,  [pR])  

cSc(r, r'; I-P3) +Xfdr" zip( ") -gp- '5 +oIx2t  (2.11) 
P = PR 
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but, unfortunately, this term involves the unknown three-point dcf of the 
liquid: 

6c(r,6p(r,,)r'; [p ] )  p=p = c3(r, r', r"; [PR]) (2.12) 

This difficulty was then circumvented by further approximating the new 
term of (2.11 ) as 

f t ft. dr" Ap(r") c3( r  , r ,  r , [ - P R ] )  

f = dr"Ap(r") - - ~ c 3 ( r , r ' , x ; [ p R ] ) + . . -  (2.13) 

and using the relation (which is exact for the liquid) 

f dx c3(Jr- xJ, ]r'-- x}; pR)=O-~R c(jr--r'l; PR ) 

so that (2.1 1) becomes finally 

f~d2 (1 - 2 )  c(r, r'; [PR + 2 A P ] )  

1 c ( I r -  r'l; PR) + 1 Oc([r-  r'l; PR) f dr" -r + . . .  

(2.14) 

where the ellipses denote now not only the terms neglected in (2.11), but 
also in (2.13). This scheme has, to our knowledge, not been pushed any 
further and raises the question of the convergence of the underlying expan- 
sion of (2.11). This expansion is clearly a density functional analog of 
Landau's well-known expansion of the free energy in powers of the order 
parameter [here Ap(r)] of a weakly first-order transition. Freezing, 
however, is a strongly first-order transition and the expansion of (2.11) 
remains to be justified. Checking, for instance, the expansion (2.11) in a 
uniform phase context, such as the liquid-gas transition, one finds ~25) that 
(because of the presence of large density derivatives) the convergence is 
indeed very slow. The adequacy of (2.15) is therefore still poorly 
understood. In a recent attempt, Igloi and Hafner (34) have proposed using 
the density of the reference fluid PR appearing in (2.9) as an additional 
variational parameter by minimizing the free energy also with respect to 
PR- This procedure will certainly lower the free energy of the solid, but 
does not answer the above criticism concerning the convergence of the 
expansion (2.11) with respect to Ap(r). 

(2.15) 
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2.4. The  Sol id  As a Liquid w i t h  an Ef fec t ive  Dens i ty  

In order to avoid the difficulties associated with the above pertur- 
bation treatments, a number of authors ~23-29'31'33) have proposed to 
describe the solid as a liquid with an effective density fi determined self- 
consistently by the actual density of the solid p(r). This avoids the above 
expansion problems, but raises instead the delicate question of the choice 
of the effective liquid density. Various proposals are available. The simplest 
is presumably the one proposed recently by Stoessel and Wolynes. (3~ 
These authors use Eq. (2.7) and approximate the excess free energy of the 
solid by that of the liquid evaluated at the effective density: 

Fr = Fex,liq ( f i )  (2.16) 

with fi determined by the solid density p(r) as a weighted average: 

= ~[p3 -= f dr' p(r') w(r'; [p]) (2.17) 

where the weighting function [V(Irl) is the interaction potential] 

dr '  
w(r; [ p ] ) = f  p ( r ' ) {  1 - exp[ - ~ V(lr - r'l )3 } 

• f dx {1-exp[-flV(lx[)])) -1 (2.18) 

has been determined in such a manner that the second virial coefficients of 
the nonuniform and uniform systems have the some form. In the approach 
of Tarazona ~23'241 one uses instead of (2.16) 

Fex[p] = f dr p(r) ~/liq(J0) (2.19) 

where 4/~iq(P) is now the excess free energy per particle of the liquid [i.e., 
Fex.jiq(~)/V= Pg/liq(P)], while fi is given by a nonlocal weighted average: 

/5 = r [p ] )  = f dr '  p(r ') w(r - r'; [p ] )  (2.20) 

defining thus a nonuniform effective density. The weighting function in 
(2.20) is then determined implicitly by using (2.19) and (2.8) and requiring 
that, for a uniform system, the virial expansion of the weighting function of 
(2.20) reproduces the virial expansion of the dcf of the uniform liquid 
system. Tarazona first truncated the virial expansion at zeroth order (23) and 
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next at second order, (24) whereas Curtin and Ashcroft C3~1 considered the 
complete virial series by solving the resulting differential equation for the 
weighting function numerically. A still different approach was proposed by 
Baus and Colot (25-29) who introduced an effective density r in order to 
approximate not the excess free energy, but instead the dcf of the solid: 

c(r, r'; [p])  = cliq(Ir - r 'l;/)) (2.21) 

where/5 = fit-p], was determined either by minimizing the free energy of the 
solid at given average density 126) or by looking for a liquid that scales with 
the given solidi 25) To this end, one first considers the oscillations that 
follow the main peak of the pair correlation function of the liquid. For a 
dense liquid these oscillations become very persistent (layering) and give 
rise to the main peak of the static structure factor, the position of which 
corresponds to the wavelength of the layering in the liquid. The best scaling 
of the liquid to the solid will then be achieved when the layering in the 
liquid mimics the layering in the solid, i.e., when the position of the main 
peak of the static structure factor of the effective liquid (this position being 
a function of P) coincides with the smallest reciprocal lattice vector of the 
solid (this lattice vector being a function of the average density of the solid 
p and of the lattice structure). Both choices yield a relation f i=fi(p)  
between the average density of the solid p and the effective density fi of the 
uniform liquid that is used to describe this solid, which turns out to be 
quite similar, (2~-28~ especiaIIy in the coexistence region. 

The main advantage of the effective liquid theories over the per- 
tubation theories discussed in Section 2.3 stems from the fact that the basic 
idea of the former can be formulated independently of any density 
expansion/2S 29,31) [-although some of the attempts ~23'24'33) have used virial 
expansions for the determination of the weighting function in (2.20)]. This 
then allows infinite-order partial resummations of the density series of 
Section 2.3 to be performed easily. For instance, Eqs. (2.9)-(2.11) become 
now on using (2.21) and the above effective density ~ ~ fi(p) 

f jd; t  (1 - )o) c(r, r'; ['PR + • Ap]) 

l fo P-P' - dp' c(Ir - r ' l ; /~(p ' ) )  (2.22) 
P - - P R  R P - - P R  

i.e., the functional integral over the path in density space from the reference 
state pR(r)= PR to the actual state p(r) of the dcf of the nonuniform system 
as it appears in the rhs of (2.9) is approximated by an ordinary integral of 
the dcf of the effective liquid over the corresponding average density path 
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from PR to p. Moreover, in the case of a uniform system we have/7 _~ p and 
the theory remains exact, which is not the case for the truncated pertur- 
bation theories. 

The main drawback of the effective liquid approach, however, is that 
there appears to be no guiding principle to systematically improve upon 
the choice of the effective liquid describing a given solid. 

2.5. The Approx imate  Euler-Lagrange Equation 

Once the approximate free energy density functional F[p ] has been set 
up according to one of the above proposals, it still remains to determine 
the equilibrium density, say p ( r )=  p0(r), satisfying Eq. (2.6). 

(a) A first procedure/~2-22'34) consists in starting directly from the 
Euler-Lagrange equation (2.5), which, using (2.7)-(2.9), one can rewrite as 

6Fex[pR] 
ln[A 3p(r)] = fl[# - ~b(r)] - fl 

@R(r) 

+ dr' d)~ c(r, r'; [PR + )~ Ap]) 3p(r ' )  (2.23) 

or, equivalently, eliminating the integration constant (at constant tem- 
perature) in favor of the density PR and chemical potential #R of some 
uniform reference state, 

P ( r ) - e x p  f i ( ~ - # a ) +  dr' d 2 c ( r , r ' ; [ p R + 2 A p ] ) A p ( r ' )  (2.24) 
PR 

Choosing /~R = #  and treating the rhs in a manner similar to (2.15), one 
obtains 

P(r)=eXppR f dr' {c(Ir- - r ' l ;PR) 

1 0c(Ir- r'l; pR) } 
+-~ (P-- PR) OpR + ... Ap(r') (2.25) 

which, given PR and the dcf of the liquid, is a nonlinear integral equation 
for p(r) whose solution defines the equilibrium density po(r) corresponding 
to the approximate free energy function. 

(b) A second procedure (23 33.3s) consists in parametrizing the local 
density p ( r ) =  p~(r) in terms of a family of test functions {p~(r)} and deter- 
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mining the member of the family that minimizes the approximate free 
energy functional FEp] at constant average density p~ [see Eq. (2.6)]: 

02F[p~] p~=p 
OF[p~] = O; > 0 (2.26) 

& p= = p &2 

The solution of (2.26), say ~=~o,  defines then the equilibrium density 
po(r) = p~0(r) corresponding to the approximate free energy functional. 

(c) In practice, the approximations specific to the free energy 
functional and those specific to the Euler-Lagrange minimization [(a) or 
(b)] have been combined in various ways, making a direct comparison of 
the different results quite difficult. The main drawback of the minimization 
based on (b) is that one has to choose a priori the family of test functions 
embedding the equilibrium density. In practice one uses for p~(r) a sum of 
identical Gaussians centered on the lattice sites with ~ determined by their 
widths. This choice, which goes back at least to a suggestion of Brout, (2) 
has the advantages that (1) the approximate free energy functional based 
on (2.21) can be computed analytically, (2) only one number (the 
equilibrium width %) has to be determined, (3) a single nonlinear algebraic 
equation (2.26) has to be solved, and (4) one can explicitly distinguish 
between the minima and the maxima of the free energy, whereas the Euler- 
Lagrange equation (2.23) determines only the extrema. 

(d) The advantage of the procedure based on (a) is that no a priori 
assumption about p(r) is required. Its drawback, however (besides the lack 
of convergence of the )>expansion already discussed in connection with the 
approximate free energy), is that the nonlinear integral equation (2.25) is 
difficult to solve. The same type of integral equation also appears in the 
Kirkwood-Monroe theory, (2"3'7'9) and it is usually solved by Fourier 
expanding the local density as 

p(r) = ~ Pk exp(ik �9 r) (2.27) 
k 

where the sum extends over all the reciprocal lattice vectors of the given 
solid. Substituting (2.27) into (2,25) yields 

Pk exp(ik �9 r) = PR exp t (  p - PR) Ck=0(PR) 
k k 

+ ~ pk, ck,(pR)exp(ik''r)~ (2.28) 
k '~O ) 

where c~(p) are the Fourier components of c(]rl; p). At first glance the idea 
is appealing, because the Fourier transform is well suited to treat the con- 
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volution products appearing in Eq, (2.25). It is clear, however, that in the 
solid p(r) is strongly peaked around the lattice sites and such a behavior 
can be reproduced in Fourier space only by retaining a very large number 
of Fourier components, which is quite impractical. Furthermore, the highly 
nonlinear character of Eq. (2.25) is such that even after projecting the 
equation on a given Fourier mode, the resulting equation relates this mode 
nonlinearly not only to itself, but also to the infinite set of all the remaining 
Fourier modes [see, e.g., (2.28)]. Therefore, in practice, a truncation 
procedure of some sort has to be used and, in principle, one should then 
study the convergence of the solution of the truncated equation toward the 
solution of the original equation (2.25). This is not an easy problem and 
has not been considered in the literature. The first authors (7"~3~ simply used 
a one-term (called density wave) approximation to the series (2.27), 
retaining only the term with the smallest reciprocal lattice vector. Starting 
with Ramakrishnan and Yussouff ~I2) several authors (14'22) used a two-term 
approximation to (2.27) with the wavevectors chosen such as to corres- 
pond approximately to the first two maxima of the static structure factor of 
the liquid. Starting with Haymet, (17~ several dozens of Fourier modes have 
been retained, ~15 21.34~ but the convergence of the solution (2.27) was not 
analyzed (only the weaker condition Zk Cklpkl 2 has been considered, but 
here the convergence is monitored by ck). 

As pointed out before, (25-29) the convergence is slow and the truncated 
Fourier series (2.27) exhibit regions with large negative values, whereas 
both the exact (2.24) and approximate equation (2.25) garantee that p(r) 
should remain nonnegative. The important point here (not always correctly 
appreciated in the literature (~9'2~ is not so much that these values are 
negative (and hence nonphysical), but that their very presence indicates 
that convergence has not been reached yet. The proposal by Haymet and 
Oxtoby ~js-2~ to add to the truncated Fourier series of p(r) its remainder 
computed from (2.25) with a truncated Fourier series for the dcf restores 
the positivity of p(r) [it also modifies the original Eq. (2.25), since the 
Fourier inverse of the truncated dcf does not restore the original c(lr4)], 
but it tells us nothing more about the convergence of the underlying trun- 
cation scheme. All in all, Eq. (2.25) remains a difficult nonlinear integral 
equation, which in my opinion deserves a more thorough study than has 
hitherto been the case. 

(e) A final point concerns the fact that several authors (~2-~2~ have 
considered that the reference state (p~,/~R) in (2.24) is the liquid (p~ = PL, 
PR =/q_) of the same chemical potential as the solid (/~L =/~s) and have 
solved (2.25) directly together with the remaining coexistence condition, 
Pc = Ps- The chemical potential is thus treated exactly and not on the same 
approximate level as the free energy (or the pressure) and the Euler- 
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Langrange equation. The chemical potential is thus no longer given as the 
density derivative, /~ = (~?/Op)f[p], of the corresponding approximate free 
energy. 

3. THE PHYSICAL INTERPRETATION OF THE ( H A R D  SPHERE) 
FREEZING M E C H A N I S M  

The density functional theory of freezing, besides yielding quantitative 
information(t2 35) about freezing that can be checked against computer 
simulations and laboratory experiments, also yields physical insight into 
the mechanism by which the solid is ultimately preferred over the liquid 
and by which freezing occurs. Since this topic has not been much 
considered in the literature, ~26) I will illustrate it here in some detail. The 
difference A f = f [ p s ] - f [ P L ]  in free energy per unit volume between the 
solid and the liquid at constant average density ( p s = p t = p )  can be 
written, using Eqs. (2.7)-(2.9) and the approximate free energy based on 
(2.21), as 

1 
f dr p(r) In 

p(r) 
[ 3 A f = ~  P 

21 j" dr f dr 'c(lr-r ' l ;~(p))Ap(r)Jp(r '  ) (3.1) 

The rhs of (3.1) indicates a competition between the purely configurational 
contribution originating from the ideal part of the free energy (first term) 
and a correlational contribution originating from the excess free energy 
[second term in the rhs of (3.1)]. Recalling that Af  = A u -  TAs, where u 
and s are, respectively the internal energy and the entropy per unit volume, 
one can write the purely configurational term as 

t3.2) 

i.e., as the difference in configurational entropy soonf between the solid and 
the liquid. The remainder can then be identified with the change 3~ in 
some effective internal energy ~ = u - Ts .... : 

1 
dr dr' [ p ( r ) -p ]  p ) [p ( r ) -  p] (3.3) 

written here in terms of an effective, density-dependent, potential: 

V~(brl; p ) -  -kB Tc(lrt; p(p)) (3.4) 



Statistical Mechanical Theories of Freezing 1143 

so that d r =  Aft - TASconr. The effective internal energy ~ is a superposition 
of the true internal energy u and of the correlational contribution s .. . .  to 
the entropy s. Both contributions, u and s ...... originate from the inter- 
action part of the free energy and cannot be further separated except in 
special cases. For instance, in the case of hard spheres there is no internal 
energy ( u = 0 )  and v ? = - T s  .... . The hard sphere freezing can hence 
be described as a competition between two forms of entropy, the 
configurational entropy Soonf and the correlational entropy s .... . The hard 
sphere freezing can, however, also be described in terms of an effective 
internal energy ~ = - T s  .... resulting from the effective interaction potential 
defined by (3.4). This clearly indicates that (once rephrased in terms of the 
effective internal energy ~) there is no fundamental difference between the 
freezing of hard spheres (u = 0) and of more general systems (u r 0). 

For the solid to become the thermodynamically stable state, i.e., at 
constant average density the state of lowest free energy, the free energy 
difference Af  has to become negative. The configurational entropy of the 
liquid is always larger than that of the ordered solid, z/S~onr< 0; this term 
increases Af  and is opposed to freezing. Hence, the lowering of Af  has to 
be produced by a lowering of the effective internal energy ft. If the solid is 
the state of lower effective internal energy, A~ < 0, it may be possible to 
reach a situation where A f <  0. In the hard sphere case the solid can then 
be interpreted as the state of highest correlational entropy. To understand 
how this comes about, it is useful to interpret (3.3) as the "electrostatic 
energy" of a "charge" density p ( r ) - p  interacting via the effective potential 
(3.4). Around the lattice sites [maxima of p(r)] the effective charge density 
is positive [p(r)>> p], while it is negative at the interstitials [minima of 
p(r); p ( r )~  p]. The effective potential of (3.4) is largely repulsive, with a 
range of the order of the true interaction potential (for instance, within the 
Percus-Yevick approximation for hard spheres V~ff is always purely 
repulsive with a range strictly equal to the hard sphere diameter). Since the 
distance between the lattice sites (or between the interstitials) is always 
greater than the range of the (effective) potential, the major contribution to 
(3.3) comes from the interaction between a lattice site and a nearby 
interstitial, i.e., between regions of opposite effective charge density. These 
regions tend to attract each other contracting the solid and facilitating par- 
ticle localization. The resulting contributions to (3.3) are negative and yield 
A~ < 0. The overall magnitude of this localization effect increases rapidly 
with the average density p [e.g., - c ( r = O ; p ]  increases with the density 
roughly as the inverse compressibility] and above a threshold density the 
decrease of ~ exceeds the decrease of S~o,r and the solid becomes the stable 
phase (Af<0) .  As the density is further increased toward the density of 
crystal close packing, the positive contributions to (3.3) coming from the 
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repulsive interaction between two lattice sites (or two interstitials), which 
at low density was outside the interaction range, returns now within the 
interaction range (for hard spheres this occurs abruptly at the close-pack- 
ing density) and at very high density competes with the almost equally 
large attractive energy, yielding finally an upper density limit above which 
no solid can exist. 

The details of the order-disorder competition between the con- 
figurational entropy of the solid and the liquid and of the competition 
between the repulsive and attractive contributions to the effective internal 
energy will depend on the details of the solid structure and of the interac- 
tion potential, but the overall picture of the resulting freezing mechanism 
as given above is fairly universal. 

4. C O N C L U S I O N S  

I have reviewed the historical background underlying the recent 
progress toward a statistical mechanical theory of freezing based on the free 
energy density functional theory of nonuniform systems viewing the solid 
as a strongly nonuniform liquid. Most of the controversial and open 
questions have been discussed, while the physical freezing mechanism as 
viewed from this theory has been described in detail. For the particular 
case of the hard spheres it has been shown how freezing results from the 
competition between the configurational entropy favoring disorder and the 
correlational entropy favoring localization. 
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